Identification of the Visceral Pain Pathway Activated by Noxious Colorectal Distension in Mice
نویسندگان
چکیده
In patients with irritable bowel syndrome, visceral pain is evoked more readily following distension of the colorectum. However, the identity of extrinsic afferent nerve pathway that detects and transmits visceral pain from the colorectum to the spinal cord is unclear. In this study, we identified which extrinsic nerve pathway(s) underlies nociception from the colorectum to the spinal cord of rodents. Electromyogram recordings were made from the transverse oblique abdominal muscles in anesthetized wild type (C57BL/6) mice and acute noxious intraluminal distension stimuli (100-120 mmHg) were applied to the terminal 15 mm of colorectum to activate visceromotor responses (VMRs). Lesioning the lumbar colonic nerves in vivo had no detectable effect on the VMRs evoked by colorectal distension. Also, lesions applied to the right or left hypogastric nerves failed to reduce VMRs. However, lesions applied to both left and right branches of the rectal nerves abolished VMRs, regardless of whether the lumbar colonic or hypogastric nerves were severed. Electrical stimulation applied to either the lumbar colonic or hypogastric nerves in vivo, failed to elicit a VMR. In contrast, electrical stimulation (2-5 Hz, 0.4 ms, 60 V) applied to the rectum reliably elicited VMRs, which were abolished by selective lesioning of the rectal nerves. DiI retrograde labeling from the colorectum (injection sites 9-15 mm from the anus, measured in unstretched preparations) labeled sensory neurons primarily in dorsal root ganglia (DRG) of the lumbosacral region of the spinal cord (L6-S1). In contrast, injection of DiI into the mid to proximal colon (injection sites 30-75 mm from the anus, measured in unstretched preparations) labeled sensory neurons in DRG primarily of the lower thoracic level (T6-L2) of the spinal cord. The visceral pain pathway activated by acute noxious distension of the terminal 15 mm of mouse colorectum is transmitted predominantly, if not solely, through rectal/pelvic afferent nerve fibers to the spinal cord. The sensory neurons of this spinal afferent pathway lie primarily in the lumbosacral region of the spinal cord, between L6 and S1.
منابع مشابه
Somatovisceral interactions in the rat dorsal column nuclei
Recent studies have revealed that noxious visceral inputs travel in the dorsal column pathway, and interactions between colorectal noxious and tactile inputs occur in the ventrobasal thalamus. This investigation was to test whether the somatovisceral interactions also take place in the dorsal column nuclei (DCN). Forty-five single DCN neurons of anesthetized rats responsive to colorectal disten...
متن کاملSomatovisceral interactions in the rat dorsal column nuclei
Recent studies have revealed that noxious visceral inputs travel in the dorsal column pathway, and interactions between colorectal noxious and tactile inputs occur in the ventrobasal thalamus. This investigation was to test whether the somatovisceral interactions also take place in the dorsal column nuclei (DCN). Forty-five single DCN neurons of anesthetized rats responsive to colorectal disten...
متن کاملEVects of octreotide on responses to colorectal distension in the rat
Background and aims—It has been suggested that the analgesic eVect of the somatostatin analogue octreotide in visceral pain involves peripheral mechanisms. We evaluated the eVect of octreotide on responses to noxious colorectal distension in rats. Methods—In a behavioural study, pressor and electromyographic responses to colorectal distension were evaluated before and after intravenous or intra...
متن کاملCB1 receptors mediate the analgesic effects of cannabinoids on colorectal distension-induced visceral pain in rodents.
Activation of cannabinoid receptors (CB(1), CB(2) and GPR(55)) produces analgesic effects in several experimental pain models, including visceral pain arising from the gastrointestinal tract. We assessed the role of CB(1), CB(2), and GPR(55) receptors and the endogenous cannabinoid system on basal pain responses and acute mechanical hyperalgesia during colorectal distension (CRD) in rodents. Th...
متن کاملPharmacology of opioid inhibition to noxious uterine cervical distension.
BACKGROUND Reflex abdominal muscle contraction elicited by colorectal distension in male rats is inhibited by mu- and kappa-opioid receptor agonists and sites of action and receptor subtypes have been probed. The authors examined the pharmacology of opioid agonist inhibition in visceral pain related to the uterine cervix, the source of labor pain. METHODS Ovariectomized female rats were anest...
متن کامل